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ABSTRACT

Urban planning is a knowledge-intensive activity. It acquires useful knowledge by
analysing jointly socio-economic data and topographic maps. When supported by
computers, this preliminary information gathering triggers a knowledge discovery
process, which often consists of exploratory data analysis tasks. Advances in geo-
referencing have caused - among the other things - a growing demand for more
powerful exploratory data analysis techniques. We resort to the field of spatial data
mining and propose the task of mining spatial association patterns/rules, i.e.
frequent associations between spatial objects, as a means for data exploration.
Strong points of the proposed technique for this task are the power of logics as a
knowledge representation and reasoning means and the capability of discovering
associations at multiple levels of description granularity. This enables new
interesting exploratory tasks for spatial data. The technique has been implemented
in SPADA and tested on census and geographic data of Stockport, one of the ten
metropolitan districts of Greater Manchester, UK. We show results obtained by
applying SPADA to a problem of urban accessibility of the Stepping Hill hospital in
Stockport.
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1. INTRODUCTION

Urban planners, who typically work to integrate knowledge with action in the pursuit
of more just, efficient and sustainable cities and environment, are used to acquire
the necessary knowledge by analysing jointly socioeconomic data and topographic
maps. This has been the practice in urban planning environments for centuries.
Indeed population and economic census data overlapped to geographic data can
be the key indicator of ‘optimum’ locations for public services, thus supporting a
good public policy. For instance, population census data such as car availability
and topographic maps such as public transport networks are core ingredients in
studies of accessibility of public services.

Currently there is a growing demand for computer tools that can link population
data to their spatial, or, more precisely, geographical distribution. Indeed geo-
referencing have enabled the spatial representation of socio-economic phenomena
as spatial objects in the sense of entities having both spatial location and spatially
independent attribute characteristics (Martin, 1999). In the UK for instance the geo-
referencing units for population census data are the areal objects ED (enumeration
district), ward, district, and county, of which ED is the smallest unit for which data is
published. Advances in geo-referencing have provided an added impetus to the
development of Geographical Information Systems (GIS). GIS are increasingly
used to store, manipulate and analyze physical, social and economic data of a
geographic area in order to provide the information necessary for effective
decision-making in urban planning (Han, Kim, 1989).  As a toolbox, GIS allow
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planners to perform spatial analysis using geo-processing functions such as map
overlay or connectivity measurements. Yet GIS do not adequately support the
spatial decision process because they lack of appropriate modeling capabilities
(Densham, 1991; Keenan, 1998). To assist the work of public and private planners,
the range of GIS applications can be greatly extended by adding some data
analysis capabilities. Exploratory data analysis goes ‘beyond the map’ to use
statistical tools in an informal, pattern-seeking vein (Anselin, 1993). More powerful
data analysis techniques are actually needed to support knowledge-intensive
activities such as urban planning.

In this paper we resort to the field of spatial data mining that investigates how
implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial
data  can be extracted (Koperski et al., 1996). Knowledge discovered from spatial
data can be in various forms including classification rules for the recognition of
geographical objects (Koperski et al., 1998) or the interpretation of topographic
maps (Malerba et al., 2001), clusters of spatial objects (Ng, Han, 1994; Sander et
al., 1998), patterns describing spatial trends, that is, regular changes of one or
more non-spatial attributes when moving away from a given start object (Ester et
al., 1998), and subgroup patterns, which identify subgroups of spatial objects with
an unusual, an unexpected, or a deviating distribution of a target variable (Klösgen,
May, 2002). In this paper we propose spatial association patterns/rules  as an
advanced means for the exploration of geo-referenced data. In GIS terminology, a
spatial pattern is a pattern showing the interaction of two or more spatially-referred
objects or space-dependent attributes, according to a particular spacing or set of
arrangements (DeMers, 2000). In the data mining context, a spatial association
rule is a frequent association involving spatial relations between spatial objects
playing the role of reference objects and spatial objects from different geographic
layers playing the role of task-relevant objects (Koperski, Han, 1995). For instance,
reference objects can be large towns and task-relevant objects can be spatial
objects belonging to the map layers of road network and hydrography within a
given geographic area. SPADA is a system for mining spatial association rules
(Lisi, Malerba, 2002). It adopts logics as a knowledge representation and
reasoning means and exploits possibly available spatial hierarchies to discover
associations at multiple levels of description granularity. Results of previous
experiments in urban planning environments are reported in (Malerba et al., 2002).

In this paper, we present an application of SPADA to a case study of urban
accessibility of health care services. The area under analysis is Stockport, one of
the ten metropolitan districts of Greater Manchester, UK. In particular, we study the
access to Stepping Hill where a big hospital is located. We have chosen this case
study for two reasons. First, it relies heavily on the aforementioned joint analysis of
census and geographic data. Second, it is interesting from the twofold perspective
of transportation planning and health care planning. Indeed accessibility of health
care services is an issue for both planning activities. Several studies of this kind
are reported in the literature. Love and Lindquist (1995) argue that crude access
measures based on data for large areal units are no longer necessary given
developments in GIS and spatially referenced data. In their study on the
accessibility of centroid-referenced census blocks to point-referenced hospitals in
Illinois (USA), they use simple accessibility measures based on straight line
distances to the nearest five hospitals for each block. Jones and Bentham (1995)
use GIS and logistic regression to test for a relationship between health outcomes
and accessibility. Using grid-referenced police records on serious and fatal road
traffic accidents and a digital road network for Norfolk, England, a routing
procedure simulated the dispatch of ambulances from their stations to accident
sites and then to hospitals, and estimated associated travel times. However all



these studies suffer from the limitations of the data analysis techniques they apply.
Some of these limits are overcome in our approach.

The paper is organized as follows. In the next section, the system SPADA is
briefly described. Section 3 illustrates the application of SPADA to Stockport data
by giving details of the database, explaining the interface of SPADA with the
database and reporting on the results of an accessibility study. Section 4
concludes the paper with remarks and future directions of work.

2. MINING SPATIAL ASSOCIATION RULES WITH SPADA

2.2. The method

The discovery of spatial association rules is a descriptive mining task aiming at the
detection of associations between reference objects and some task-relevant
objects. The former are the main subject of the description, while the latter are
spatial objects that are relevant for the task in hand and are spatially related to the
former. For instance, we may be interested in looking for spatial association rules
that relate properties of some selected EDs (reference objects) with properties of
other spatial objects, such as public transport stops (task-relevant objects) in order
to investigate the socioeconomic phenomenon of deprivation of some urban areas.

In general, association rules are a class of regularities introduced by Agrawal et
al., (1993) that can be expressed by the implication:

P→Q (s, c),
where P and Q are a set of literals, called items, such that P∩Q = ∅, the parameter
s, called support, estimates the probability p(P∪Q) of the underlying pattern P∪Q,
and the parameter c, called confidence, estimates the probability p(Q|P).

We call an association rule P→Q spatial, if P∪Q is a spatial pattern, that is, it
expresses a spatial relationship among spatial objects. Mining spatial association
rules presents two main sources of complexity:

1. the implicit definition of spatial relations and
2. the granularity of the spatial objects.

The former is due to the fact that the location and the extension of spatial objects
implicitly define spatial relations such as topological, distance and direction
relations. The latter refers to the fact that spatial objects can be described at
multiple levels of granularity. For instance, UK census data can be geo-referenced
with respect to the hierarchy of areal objects:

ED → Ward →  District →  County,
based on the inside relationship between locations. Therefore, some kind of
taxonomic knowledge of task-relevant geographic layers may also be taken into
account to obtain descriptions at different granularity levels (multiple-level
association rules).

 The problem of mining association rules can be formally stated as follows:
Given

− a spatial database (SDB),
− a set of reference objects S,
− some sets Rk, 1≤k≤m, of task-relevant objects
− a background knowledge BK including some spatial hierarchies Hk on

objects in Rk

− M granularity levels in the descriptions (1 is the highest while M is the
lowest)

− a couple of thresholds minsup[l] and minconf[l] for each granularity level
Find strong multi-level spatial association rules.



Each Rk is typically a map layer and spatial hierarchies capture is-a relations
among locations on the basis of their geometry. To deal with several spatial
hierarchies at once in a uniform manner, objects in them are mapped to one or
more of the M user-defined description granularity levels so that frequency of
patterns as well as strength of rules depend on the level l of granularity with which
patterns/rules describe data. To be more precise, a pattern P (s%) at level l is
frequent if s≥ minsup[l] and all ancestors of P with respect to Hk are frequent at
their corresponding levels. An association rule Q → R (s%, c%) at level l is strong if
the pattern Q∪R (s%) is frequent and c≥ minconf[l].

The task of mining spatial association rules is supported by the module Geo-
associator of the spatial data mining system GeoMiner (Han et al., 1997).
However, the method implemented in Geo-associator suffers from severe
limitations due to the expressive power of the language adopted for representing
both data and patterns. For instance, Geo-associator can not discover associations
involving two or more distinct objects belonging to the same map layer. This lack of
expressivity is due to the so-called single-table assumption which is common to
most data mining methods currently available in the literature. Conversely our
system SPADA for mining spatial association rules (Malerba et al., 2002) follows
the recently promoted (multi-)relational approach to data mining (Džeroski, Lavrac,
2001). Here associations are represented as conjunctive formulas of a logical
language. An example of pattern is the following formula:

is_a(X,large_town), intersects(X,Y), is_a(Y,road),
intersects(X,Z), is_a(Z,road), Z≠Y

to be read as "X is a large town and X intersects Y and Y is a road and X
intersects Z and Z is a road and Z is distinct from Y". Note that the special-purpose
language primitive ≠ allows object identity to be expressed. Suppose that this
pattern is frequent with 91% support. Thus we can say that "91% of large towns
intersect two distinct roads" in the given geographic area. From this pattern the
following strong rule can be derived:

is_a(X, large_town), intersects(X,Y), is_a(Y, road)
→ intersects(X,Z), is\_a(Z,road), Z≠ Y (91%, 100%)

It says that: “If a large town X intersects a road Y then X intersects a road Z
distinct from Y with 91% support and 100% confidence". Since multiple concept
levels are dealt with, finer-grained descriptions are also expected, such as:

is_a(X, large_town), intersects(X,Y), is_a(Y,regional_road),
intersects(X,Z), is_a(Z, main_trunk_road), Z≠ Y (75%)

which supplies more insight into the nature of the task-relevant objects Y and Z.
The choice of a logical language poses some issues of computational

complexity. In particular, the number of possible patterns can be very large and it
becomes necessary to limit their space of possible patterns by providing explicit
constraints (declarative bias). SPADA requires one such specification as additional
input. These constraints specify what relations should be involved in the patterns,
how the relations may be interconnected and what other syntactic constraints the
patterns have to obey.

Further details of the method underlying SPADA can be found in (Malerba, Lisi,
2001).

2.2. Distributed architecture of the system

SPADA is a component of a distributed client-server system named ARES
(Association Rules Extractor from Spatial data), that incorporates, in addition to
SPADA, a Graphical User Interface (GUI), a module for the extraction of spatial



features from maps (FEATEX), a module for the discretisation of numerical
attributes (RUDE) and a SPADA server which allows multiple users to run
concurrently SPADA on the server. The distributed architecture of ARES is showed
in Figure 1.

Figure 1. The software architecture of ARES

The GUI provides the user with facilities for controlling all parameters of the
data mining process. More precisely, a wizard supports the user in the selection of
layers (for spatial objects), tables (for aspatial properties) and attributes involved in
the query to the SDB (Oracle Spatial). Conditions on both aspatial attributes
(simple comparisons between two fields) and spatial features (simple comparisons
with a field or a constant) can also be specified. Once the query is performed, the
GUI allows the user to discretise some numerical attributes, to transform spatial
relations and aspatial attributes into logic predicates, to specify the reference and
the task relevant objects, to define the spatial hierarchies and their mappings into
the M granularity levels, to specify the declarative bias, and finally to run SPADA
on the server.

Many spatial features (relations and attributes) can be extracted from spatial
objects stored in the SDB. The feature extraction requires complex data
transformation processes to make spatial relations explicit. This function is partially
supported by the SDBMS, which offers spatial data types in its data model and
query language and supports them in its implementation, providing at least spatial
indexing and efficient algorithms for spatial join (Güting, 1994). Therefore, a middle
layer module (FEATEX) is required to make possible a loose coupling between
SPADA and the SDB by generating features of spatial objects (points, lines, or
regions). FEATEX is implemented as an Oracle package of procedures and
functions, each of which implements a different feature (Appice et al., 2003).

Since SPADA, like many other association rule mining algorithms, cannot
process numerical data properly, it is necessary to perform a discretization of
numerical features with a relatively large domain. For this purpose we have
implemented the relative unsupervised discretization algorithm RUDE (Ludl,
Widmer, 2000) which discretizes an attribute of a relational database in the context
defined by other attributes. At the end of this data preprocessing step, transformed
data are stored in temporary Oracle Spatial tables. A PL-SQL function is
responsible for transforming these data into a logic representation.

ORACLE SPATIAL DBMS

SPADA

FEATEX

SPADA SERVERSPADA GUI

RUDE

CLIENT SIDE                  DM SERVER SIDE

DB SERVER SIDE



3.  APPLICATION OF SPADA TO STOCKPORT DATA

In this section we describe a practical example that shows how it is possible to
perform a spatial analysis on UK 1991 census data. The application has been
developed in the context of the European project SPIN! (Spatial Mining for Data of
Public Interest) (May, 2000). Data concern Stockport, one of the ten Metropolitan
Districts of Great Manchester, UK. Stockport District is divided into twenty-two
wards, each of which is decomposed into censual sections or enumeration districts
(EDs), for a total of 589 EDs. Spatial analysis is enabled by the availability of
vectorized boundaries of the 1991 census EDs as well as by other Ordnance
Survey digital maps of the district, where several interesting layers are available,
namely roads, bus priority lines, and so on. By joining UK 1991 census data
available at the ED summarization level with some spatial objects (e.g. EDs, roads,
and railways) it is possible to investigate socio-economic issues from a spatial
viewpoint.

Both census data and digital maps are stored in an Oracle Spatial database,
which is an object relational DBMS extended with spatial data handling facilities.
Census data are distributed in 89 tables, each having 120 attributes on average,
available for policy analysis. Census data are available only at ED level and are all
numeric (in fact, integer-valued). They provide statistics on the population (resident
at the census time, ethnic group, age, marital status, economic position, and so
on), on the households in each ED (number of households with n children, number
of households with n economically inactive people, number of households with two
cars, and so on) as well as on some services available in each ED (e.g., number of
schools).

 For the application of our spatial association rule mining method we have
focused our attention on transportation planning, which is one of the key issues in
the Unitary Development Plan (UDP) of Stockport. In particular, we investigated
the accessibility of the Stepping Hill Hospital. This is an inter-ED analysis, where
spatial features concern relations between EDs, while aspatial features are mainly
extracted from census data for all EDs.

The concept of “accessibility” appears initially in the context of geographical
science and was progressively introduced in transport planning in the 1960’s and
1970’s. Many different definitions of accessibility and many ways to measure it can
be found in the literature. In this work we are interested in urban accessibility,
which refers to local (inner city) daily transport opportunities. A great effort has
been made to define urban accessibility indices , which can be used to
assess/compare transportation facilities within different regions of an urban area or
between urban regions (Bhat et al., 2000). Accessibility is usually measured with
respect to key activity locations for individuals (e.g., home, workplace) and
evaluates the transportation services provided in these key locations to assess
their relative advantages (Burns, 1979). In this work, we are interested in the
accessibility “to” the Stepping Hill Hospital “from” the actual residence of people
living within in the area served by the hospital. Since (micro) data on the actual
residence of each involved household are not available, we study the accessibility
at the ED level. Moreover, our study does not aim to synthesize a new accessibility
index, but to discover human interpretable patterns that can also contribute to
directing resources for facility improvement in areas with poor transport
accessibility.

We decided to mine association rules relating five EDs close to the Stepping Hill
Hospital (task relevant objects) with one-hundred and fifty-two EDs within a



distance of 10 Km of the hospital  (reference objects). The goal is to understand
which reference EDs have access to the task relevant EDs. To define the
accessibility we used the Ordnance Survey data on transport network, namely the
layers of roads, railways and bus priority lines (see Figure 2).

Figure 2. Stockport map around Stepping-Hill Hospital. Spatial objects are the following: one-hundred
and fifty-two task relevant EDs (white regions), five task-relevant EDs (yellow regions), the only bus
priority line (thick light-blue line), crossing roads (blue lines), crossing railways (green lines).

By using FEATEX we extracted facts concerning two topological relationships
between EDs and the only bus priority line reported in the spatial database for that
area. Two examples are the following:

external_touches_to(ed_03bsfq29,bus_priority_line_1).
comes_from(ed_03bsfl27,bus_priority_line_1).

The constants ed_03bsfq29 and ed_03bsfl27 denote two distinct EDs, while
bus_priority_line_1 is the only constant associated to a bus priority line. The
topological relations external_touches_to and comes_from are computed
according to the 9-intersection model (Egenhofer and Franzosa, 1991; Egenhofer
and Herring,1994) and are schematized in Figure 3.

The set of topological relationships between EDs and roads is more varied.
Some facts extracted by FEATEX are the following:

along(ed_03bsfk28,road_15329).
comes_from(ed_03bsfb23,road _12212).
crosses(ed_03bsfc13,road _12245).
external_ends_at(ed_03bsfc01,road_11501).
external_touches_to(ed_03bsfb22,road_ 15260).
external_comes_from(ed_03bsfc01,road_11502).
goes_out_of(ed_03bsfh01,road_ 10884).
inside(ed_03bsfc01,road_11494).
internal_ends_at(ed_03bsfc01,road_11500).
runs_along_boundary_ends_inside(ed_03bsfg22,road_ 10884).
runs_along_boundary(ed_03bsfc23,road _12312).

In this case constants road_# refer to roads crossing the interested area. It is
noteworthy that the topological relations above are mutually exclusive, that is, it is
impossible for two of them to concern the same pair of constants (ED, road).



Figure 3. Twelve feasible relations between a region and a line according to the 9-intersection model.

Finally, we used FEATEX to extract spatial relationships between EDs and
railways. Some examples of facts generated by the Oracle package are:

along(ed_ 03bsfg25,rail_ 2453).
comes_from(ed_ 03bsfc05,rail_ 2355).
crosses(ed_ 03bsfc13,rail_ 2391).
external_ends_at(ed_ 03bsfc05,rail_ 2389).
external_touches_to(ed_ 03bsfc20,rail_ 2389).
inside(ed_ 03bsfc01,rail_ 2341).
internal_ends_at(ed_ 03bsfc23,rail_ 2418).
overlapped_shortcut(ed_ 03bsfh12,rail_ 2487).
runs_along_boundary_ends_inside(ed_ 03bsfg11,rail_ 2429).
runs_along_boundary(ed_ 03bsfc10,rail_ 2391).



The total number of facts is 1,147. Despite the complexity of the spatial
computation performed by FEATEX to extract these facts, the results are still not
appropriate for the goals of our data analysis tasks. Indeed, we are interested in
relationships between EDs, such as those stating that two EDs are ‘connected’ by
the same bus priority line or the same road or the same railway. To solve this
problem we specified the following rules to the domain specific knowledge:

1. crossed_by_bus_line(X) :- external_touches_to(X,bus_priority_line_1).
2. crossed_by_bus_line(X) :- comes_from(X,bus_priority_line_1).
3. connected_by_bus_line(X,Y) :- crossed_by_bus_line(X), crossed_by_bus_line(Y), X\=Y.
4. crossed_by_road(X,Z) :- along(X,Z), is_a(Z,road).
5. crossed_by_road(X,Z) :- comes_from(X,Z), is_a(Z,road).
6. crossed_by_road(X,Z) :- crosses(X,Z), is_a(Z,road).
7. crossed_by_road(X,Z) :- external_ends_at(X,Z), is_a(Z,road).
8. crossed_by_road(X,Z) :- external_touches_to(X,Z), is_a(Z,road).
9. crossed_by_road(X,Z) :- goes_out_of(X,Z), is_a(Z,road).
10. crossed_by_road(X,Z) :- inside(X,Z), is_a(Z,road).
11. crossed_by_road(X,Z) :- internal_ends_at(X,Z), is_a(Z,road).
12. crossed_by_road(X,Z) :- runs_along_boundary_ends_inside(X,Z), is_a(Z,road).
13. crossed_by_road(X,Z) :- runs_along_boundary(X,Z), is_a(Z,road).
14. connected_by_road(X,Y) :- crossed_by_road(X,Z), crossed_by_road(Y,Z), X\=Y.
15. crossed_by_rail(X,Z) :- along(X,Z), is_a(Z,rail).
16. crossed_by_rail(X,Z) :- comes_from(X,Z),is_a(Z,rail).
17. crossed_by_rail(X,Z) :- crosses(X,Z),is_a(Z,rail).
18. crossed_by_rail(X,Z) :- external_ends_at(X,Z),is_a(Z,rail).
19. crossed_by_rail(X,Z) :- external_touches_to(X,Z),is_a(Z,rail).
20. crossed_by_rail(X,Z) :- inside(X,Z),is_a(Z,rail).
21. crossed_by_rail(X,Z) :- internal_ends_at(X,Z),is_a(Z,rail).
22. crossed_by_rail(X,Z) :- overlapped_shortcut(X,Z),is_a(Z,rail).
23. crossed_by_rail(X,Z) :- runs_along_boundary_ends_inside(X,Z),is_a(Z,rail).
24. crossed_by_rail(X,Z) :- runs_along_boundary(X,Z),is_a(Z,rail).
25. connected_by_rail(X,Y) :- crossed_by_rail(X,Z), crossed_by_rail(Y,Z), X\=Y.

Here the use of the predicate is_a hides the fact that two hierarchies have been
defined for spatial objects (see Figure 4). Both hierarchies have depth three and
are straightforwardly mapped into three granularity levels.

Figure 4. Two spatial hierarchies defined for the mining task concerning the accessibility of the Stepping
Hill Hospital. They are mapped into three granularity levels.

The ‘connection’ predicates defined above express direct accessibility of an ED
from another ED by means of only one road or railway or bus line. To express a
more complex concept of accessibility, we added the following rules to the domain
specific knowledge:

26. can_reach_by_road(X,Y) :- connected_by_road(X,Y).
27. can_reach_by_road(X,Y) :- connected_by_road(X,Z), can_reach_by_road(Z,Y), X\=Y.
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28. can_reach_by_rail(X,Y) :- connected_by_rail(X,Y).
29. can_reach_by_rail(X,Y) :- connected_by_rail(X,Z), can_reach_by_rail(Z,Y), X\=Y.
30. can_reach_by_bus(X,Y) :- connected_by_bus_line(X,Y).
31. can_reach_by_bus(X,Y) :- connected_by_bus_line(X,Z), can_reach_by_bus_line(Z,Y),

X\=Y.

These rules express a limited form of the transitivity property of
‘connectedness’. Indeed, they state that an ED Y can be reached from another ED
X if they are either directly connected by a road or a railway or a bus line, or if there
is another “intermediate” ED Z, which is directly connected to X and can be
reached from Y.

To complete the domain specific knowledge, we added the following rules on
the accessibility by means of public transport:

32. can_reach_by_road_rail(X,Y) :- connected_by_road(X,Z), can_reach_by_rail(Z,Y), X\=Y.
33. can_reach_by_road_bus(X,Y) :- connected_by_road(X,Z), can_reach_by_bus (Z,Y),

X\=Y.
34. can_reach_by_rail_bus(X,Y) :- connected_by_rail(X,Z), can_reach_by_bus (Z,Y), X\=Y.
35. can_reach_by_rail_bus(X,Y) :- connected_by_bus_line(X,Z), can_reach_by_rail(Z,Y),

X\=Y.
36. can_reach_by_public_transport(X,Y) :- can_reach_by_bus(X,Y).
37. can_reach_by_public_transport(X,Y) :- can_reach_by_rail(X,Y).
38. can_reach_by_public_transport(X,Y) :- can_reach_by_rail_bus(X,Y).
and the complementary definition of accessibility by means of roads alone:
39. can_reach_only_by_road(X,Y) :- can_reach_by_road(X,Y),

\+can_reach_by_public_transport(X,Y).

Until now, census data have not been used to define the accessibility of the
Stepping Hill Hospital. All extracted data and user-defined background knowledge
are purely spatial. However, we can observe that the accessibility of an area
cannot be defined on the basis of the transport network alone. Even though some
roads connect a reference ED X with a task relevant ED Y, people living in X might
have problems reaching Y because they do not drive. This means that sociological
data available in the census data tables can be profitably used to give an improved
definition of accessibility. We selected four attributes on the percentage of
households with zero, one, two, and three or more cars, we discretized them with
RUDE and generated the following four binary predicates for SPADA: no_car,
one_car, two_cars, three_more_cars . The first argument of the predicate refers to
an ED, while the second argument is an interval returned by RUDE.

To complete the problem statement we specified a declarative bias both to
constrain the search space and to filter out some uninteresting spatial association
rules. In particular, we asked for rules containing only the following predicates:
can_reach_by_public_transport , can_reach_only_by_road, no_car, one_car,
two_cars, and three_more_cars . In this way, we ruled out all spatial relations
directly extracted by means of FEATEX and all intermediate spatial relations that
helped to define the two interesting ones, namely the accessibility by public
transport and the accessibility only by roads. Moreover, the specification of the
following filter:

pattern_constraint([no_car(_,_), one_car(_,_), two_cars(_,_), three_more_cars(_,_)], 1).

prevents the generation of association rules with purely spatial patterns, that is,
patterns showing only spatial relations between spatial objects. Purely spatial
patterns are indeed of no interest to the expert in transport planning, since it is very
likely that they convey no additional information to what he/she already knows.



After some tuning of the parameters min_sup and min_conf for each granularity
level, we decided to run the system with the following parameter values:

min_sup[1]=0.2 min_conf[1]=0.5
min_sup[2]=0.1 min_conf[2]=0.4
min_sup[3]=0.1 min_conf[3]=0.3

Despite the above constraints, SPADA generated 944 rules in 88 secs from a
set of 39,830 extracted or inferred facts. More precisely, the system generated 28
rules in 38 secs at granularity level 1, 215 rules in 17 secs at level 2, and 701 rules
in 33 secs at level 3. The output rules are stored in M×K XML files, where M is the
number of granularity levels (3) and K is the maximum number of refinement steps
(6). An additional index HTML file allows users to browse the output rules both by
level and by refinement step (see Figure 5).

Figure 5. Browsing results of the SPADA system. The user can select the refinement (or specialization)
step and the granularity level. Rules are reported in the order in which they are generated, but they can
be sorted in a decreasing order by confidence, support, antecedent length and consequence length. In
addition to usual confidence and support values, the name of the reference EDs supporting the rule is
shown. Results can be easily shown on a map.

Two of the rules returned by SPADA at the first level are the following:

ed_around_stepping_hill(A), can_reach_only_by_road(A,B),
is_a(B,stepping_hill_ED) → no_car(A,[0.228..0.653]) (38.15%, 56.31%)

ed_around_stepping_hill(A), can_reach_by_public_transport(A,B),
is_a(B,stepping_hill_ED) → no_car(A,[0.228..0.653]) (21.71%, 61.11%).

The spatial pattern of the first rule occurs in fifty-eight distinct EDs. This means
that from fifty-eight distinct EDs within a distance of 10Km from Stepping Hill
Hospital, it is possible to reach the hospital only by road and the percentage of



households with no car is quite high (between 22.8% and 65.3%). Moreover, if
from an ED A around Stepping Hill Hospital it is possible to reach one of the five
task relevant EDs only by road, then the confidence that A has a high percentage
of households with no car is 56.31%.

The spatial pattern of the second rule occurs in thirty-three distinct EDs. This
means that from thirty-three reference EDs whose percentage of households with
no car is quite high it is possible to reach the area of the Stepping Hill Hospital by
public transport. The confidence in the second rule is a little higher than the first
association rule.

At granularity level 2, SPADA specializes the task relevant object
stepping_hill_ED considered at level 1. Only three specializations are possible for
the five task relevant objects, namely hazel_grove_ed, davenport_ed,
great_moor_ed, which correspond to three distinct wards (Hazel Grove, Davenport,
Great Moor). The first rule above is specialized as follows:

ed_around_stepping_hill(A), can_reach_only_by_road(A,B),
is_a(B,great_moor_ED) → no_car(A,[0.228..0.653]) (38.15%, 56.31%)
ed_around_stepping_hill(A), can_reach_only_by_road(A,B),
is_a(B,davenport_ED) → no_car(A,[0.228..0.653]) (21.71%, 50.76%)
ed_around_stepping_hill(A), can_reach_only_by_road(A,B),
is_a(B,hazel_grove_ED) → no_car(A,[0.228..0.653]) (21.71%, 50.76%).

As expected, the support of some rules have decreased. However, since both
support and confidence are greater than the corresponding user-defined
thresholds, all the three rules are output by SPADA. Similar considerations apply to
granularity level 3, where specific task relevant EDs are reported.

Association rules found by SPADA in this application can be of interest to urban
planners, since they relate data on the transport network with data on sociological
factors. However, this study has three main limitations due to the nature of
available data. First, we considered 1991 Census data, which are now obsolete.
Second, the crossing of a railway does not necessarily mean that there is a station
in an ED. Similar considerations can be made for bus priority lines and roads.
Third, digital maps made available by the Ordnance Survey are devised for
cartographic reproduction purposes and not for data analysis. Hence, a road may
appear to be ‘blocked’ in the digital map, because it runs under a bridge.

4   CONCLUSIONS

In this paper an application of spatial data mining to geo-referenced census data
and digitized topographic maps has been illustrated. The multi-relational approach
and the usage of logic as representation and reasoning means is justified by the
need to consider relationships implicitly defined between spatial objects. Spatial
relationships and spatial reasoning rules can be easily represented by means of
first-order logic clauses. The interface to a spatial database is another crucial issue
in spatial data mining. In this work, a form of loose coupling between the rule
mining system SPADA and the SDB has been presented. It is based on the
implementation of an Oracle package for the extraction of a number of spatial and
aspatial features initially represented as tuples and then translated into atoms.
Advantages and drawbacks of this approach have been briefly discussed in the
paper. The future implementation of a tight coupling will permit an experimental
comparison of the two solutions.



The specific urban planning problem faced in this paper concerns the
accessibility of an urban area. Unlike typical accessibility studies, no index has
been developed in this application. Rather, we aimed at discovering human
interpretable patterns that can also contribute to directing resources for facility
improvement in areas with poor transport accessibility. Indeed, some of the
discovered rules seem to convey new knowledge to urban planners, although the
search for these “nuggets” requires a lot of tuning and effort on the part of the data
analyst in order to constrain the search space properly and discard most of the
obvious or totally useless patterns hidden in the data. One of the main limitations of
our system, which is also a problem of many other relational data mining systems,
is the requirement of some expertise in data and knowledge engineering. Indeed,
the user should know how data are organized in the spatial database (e.g., layers
and physical representation of objects), the semantics of spatial relations that can
be extracted from digital maps, the meaning of some parameters used in the
discretization process and in the generation of spatial association rules, as well as
the correct and most efficient way to specify the domain knowledge and declarative
bias. Also the system currently lacks of presentation modalities that make the
discovered patterns immediately and intuitively understandable by end-users in
urban planning environments, i.e. urban planners. For instance, a multi-modal
interface has been presented in (De Carolis, Lisi, 2001). This and other solutions to
usability problems should be investigated with the help of end-users themselves.
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